Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 326(3): R242-R253, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284128

RESUMO

The estrous cycle is known to modify food, fluid, and electrolyte intake behaviors and energy homeostasis in various species, in part through fluctuations in estrogen levels. Simultaneously, commonly commercially available rodent dietary formulations greatly vary in soy protein content, and thereby the delivery of biologically active phytoestrogens. To explore the interactions among the estrous cycle, sodium, fluid, and caloric seeking behaviors, and energy homeostasis, young adult C57BL/6J female mice were maintained on a soy protein-free 2920x diet and provided water, or a choice between water and 0.15 mol/L NaCl drink solution. Comprehensive metabolic phenotyping was performed using a multiplexed Promethion (Sable Systems International) system, and estrous stages were determined via daily vaginal cytology. When provided food and water, estrous cycling had no major modulatory effects on intake behaviors or energy balance. When provided a saline solution drink choice, significant modulatory effects of the transition from diestrus to proestrus were observed upon fluid intake patterning, locomotion, and total energy expenditure. Access to saline increased total daily sodium consumption and aspects of energy expenditure, but these effects were not modified by the estrous stage. Collectively, these results indicate that when supplied a phytoestrogen-free diet, the estrous cycle has minor modulatory effects on ingestive behaviors and energy balance in C57BL/6J mice that are sensitive to sodium supply.NEW & NOTEWORTHY When provided a phytoestrogen-free diet, the estrous cycle had very little effect on food and water intake, physical activity, or energy expenditure in C57BL/6J mice. In contrast, when provided an NaCl drink in addition to food and water, the estrous cycle was associated with changes in intake behaviors and energy expenditure. These findings highlight the complex interactions among estrous cycling, dietary formulation, and nutrient presentation upon ingestive behaviors and energy homeostasis in mice.


Assuntos
Fitoestrógenos , Cloreto de Sódio , Camundongos , Feminino , Animais , Fitoestrógenos/farmacologia , Camundongos Endogâmicos C57BL , Ciclo Estral , Dieta , Metabolismo Energético , Sódio , Água
2.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R576-R592, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37720996

RESUMO

Postnatal growth failure remains a significant problem for infants born prematurely, despite aggressive efforts to improve perinatal nutrition. Though often dysregulated in early life when children are born preterm, sodium (Na) homeostasis is vital to achieve optimal growth. We hypothesize that insufficient Na supply in this critical period contributes to growth restriction and programmed risks for cardiometabolic disease in later adulthood. Thus, we sought to ascertain the effects of prolonged versus early-life Na depletion on weight gain, body composition, food and water intake behaviors, and energy expenditure in C57BL/6J mice. In one study, mice were provided a low (0.04%)- or normal/high (0.30%)-Na diet between 3 and 18 wk of age. Na-restricted mice demonstrated delayed growth and elevated basal metabolic rate. In a second study, mice were provided 0.04% or 0.30% Na diet between 3 and 6 wk of age and then returned to standard (0.15%)-Na diet through the end of the study. Na-restricted mice exhibited growth delays that quickly caught up on return to standard diet. Between 6 and 18 wk of age, previously restricted mice exhibited sustained, programmed changes in feeding behaviors, reductions in total food intake, and increases in water intake and aerobic energy expenditure while maintaining normal body composition. Although having no effect in control mice, administration of the ganglionic blocker hexamethonium abolished the programmed increase in basal metabolic rate in previously restricted mice. Together these data indicate that early-life Na restriction can cause programmed changes in ingestive behaviors, autonomic function, and energy expenditure that persist well into adulthood.


Assuntos
Comportamento Alimentar , Sódio , Humanos , Gravidez , Feminino , Lactente , Criança , Camundongos , Animais , Camundongos Endogâmicos C57BL , Metabolismo Energético , Aumento de Peso , Peso Corporal
3.
Hypertension ; 80(9): 1871-1880, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470185

RESUMO

BACKGROUND: Mice prefer warmer environments than humans. For this reason, behavioral and physiological thermoregulatory responses are engaged by mice in response to a standard room temperature of 22 to 24 °C. Autonomic mechanisms mediating thermoregulatory responses overlap with mechanisms activated in hypertension, and, therefore, we hypothesized that housing at thermoneutral temperatures (TNs; 30 °C) would modify the cardiometabolic effects of deoxycorticosterone acetate (DOCA)-salt in mice. METHODS: The effects of DOCA-salt treatment upon ingestive behaviors, energy expenditure, blood pressure, heart rate (HR), and core temperature were assessed in C57BL/6J mice housed at room temperature or TN. RESULTS: Housing at TN reduced food intake, energy expenditure, blood pressure, and HR and attenuated HR responses to acute autonomic blockade by chlorisondamine. At room temperature, DOCA-salt caused expected increases in fluid intake, sodium retention in osmotically inactive pools, blood pressure, core temperature, and also caused expected decreases in fat-free mass, total body water, and HR. At TN, the effects of DOCA-salt upon fluid intake, fat gains, hydration, and core temperature were exaggerated, but effects on energy expenditure and HR were blunted. Effects of DOCA-salt upon blood pressure were similar for 3 weeks and exaggerated by TN housing in the fourth week. CONCLUSIONS: Ambient temperature robustly influences behavioral and physiological functions in mice, including metabolic and cardiovascular phenotype development in response to DOCA-salt treatment. Studying cardiometabolic responses of mice at optimal ambient temperatures promises to improve the translational relevance of rodent models.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Humanos , Camundongos , Animais , Acetato de Desoxicorticosterona/farmacologia , Temperatura , Camundongos Endogâmicos C57BL , Hipertensão/induzido quimicamente , Pressão Sanguínea/fisiologia , Desoxicorticosterona/farmacologia
4.
Physiol Genomics ; 54(6): 196-205, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35476598

RESUMO

The brain renin-angiotensin system (RAS) is implicated in control of blood pressure (BP), fluid intake, and energy expenditure (EE). Angiotensin II (ANG II) within the arcuate nucleus of the hypothalamus contributes to control of resting metabolic rate (RMR) and thereby EE through its actions on Agouti-related peptide (AgRP) neurons, which also contribute to EE control by leptin. First, we determined that although leptin stimulates EE in control littermates, mice with transgenic activation of the brain RAS (sRA) exhibit increased EE and leptin has no additive effect to exaggerate EE in these mice. These findings led us to hypothesize that leptin and ANG II in the brain stimulate EE through a shared mechanism. Because AgRP signaling to the melanocortin MC4R receptor contributes to the metabolic effects of leptin, we performed a series of studies examining RMR, fluid intake, and BP responses to ANG II in mice rendered deficient for expression of MC4R via a transcriptional block (Mc4r-TB). These mice were resistant to stimulation of RMR in response to activation of the endogenous brain RAS via chronic deoxycorticosterone acetate (DOCA)-salt treatment, whereas fluid and electrolyte effects remained intact. These mice were also resistant to stimulation of RMR via acute intracerebroventricular (ICV) injection of ANG II, whereas BP responses to ICV ANG II remained intact. Collectively, these data demonstrate that the effects of ANG II within the brain to control RMR and EE are dependent on MC4R signaling, whereas fluid homeostasis and BP responses are independent of MC4R signaling.


Assuntos
Angiotensina II , Metabolismo Energético , Leptina , Receptor Tipo 4 de Melanocortina , Proteína Relacionada com Agouti/metabolismo , Angiotensina II/farmacologia , Animais , Pressão Sanguínea/fisiologia , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Leptina/metabolismo , Leptina/farmacologia , Melanocortinas/metabolismo , Melanocortinas/farmacologia , Camundongos , Receptor Tipo 4 de Melanocortina/metabolismo
5.
Front Physiol ; 13: 855054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283781

RESUMO

Cardiovascular disease represents the leading cause of death in the United States, and metabolic diseases such as obesity represent the primary impediment to improving cardiovascular health. Rodent (mouse and rat) models are widely used to model cardiometabolic disease, and as a result, there is increasing interest in the development of accurate and precise methodologies with sufficiently high resolution to dissect mechanisms controlling cardiometabolic physiology in these small organisms. Further, there is great utility in the development of centralized core facilities furnished with high-throughput equipment configurations and staffed with professional content experts to guide investigators and ensure the rigor and reproducibility of experimental endeavors. Here, we outline the array of specialized equipment and approaches that are employed within the Comprehensive Rodent Metabolic Phenotyping Core (CRMPC) and our collaborating laboratories within the Departments of Physiology, Pediatrics, Microbiology & Immunology, and Biomedical Engineering at the Medical College of Wisconsin (MCW), for the detailed mechanistic dissection of cardiometabolic function in mice and rats. We highlight selected methods for the analysis of body composition and fluid compartmentalization, electrolyte accumulation and flux, energy accumulation and flux, physical activity, ingestive behaviors, ventilatory function, blood pressure, heart rate, autonomic function, and assessment and manipulation of the gut microbiota. Further, we include discussion of the advantages and disadvantages of these approaches for their use with rodent models, and considerations for experimental designs using these methods.

6.
Function (Oxf) ; 2(3): zqab019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33939772

RESUMO

Evidence supports various roles for microbial metabolites in the control of multiple aspects of host energy flux including feeding behaviors, digestive efficiency, and energy expenditure, but few studies have quantified the energy utilization of the biomass of the gut microbiota itself. Because gut microbiota exist in an anoxic environment, energy flux is expected to be anaerobic; unfortunately, commonly utilized O2/CO2 respirometry-based approaches are unable to detect anaerobic energy flux. To quantify the contribution of the gut microbial biomass to whole-animal energy flux, we examined the effect of surgical reduction of gut biomass in C57BL/6J mice via cecectomy and assessed energy expenditure using methods sensitive to anaerobic flux, including bomb and direct calorimetry. First, we determined that cecectomy caused an acceleration of weight gain over several months due to a reduction in combined total host plus microbial energy expenditure, as reflected by an increase in energy efficiency (ie, weight gained per calorie absorbed). Second, we determined that under general anesthesia, cecectomy caused immediate changes in heat dissipation that were significantly modified by short-term pretreatment with dietary or pharmaceutical interventions known to modify the microbiome, and confirmed that these effects were undetectable by respirometry. We conclude that while the cecum only contributes approximately 1% of body mass in the mouse, this organ contributes roughly 8% of total resting energy expenditure, that this contribution is predominantly anaerobic, and that the composition and abundance of the cecal microbial contents can significantly alter its contribution to energy flux.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Biomassa , Camundongos Endogâmicos C57BL , Aumento de Peso
7.
Am J Physiol Regul Integr Comp Physiol ; 320(1): R44-R54, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33085913

RESUMO

The measurement of fluid compartmentalization, or the distribution of fluid volume between extracellular (ECF) and intracellular (ICF) spaces, historically requires complicated, burdensome, and often terminal methodologies that do not permit repeated or longitudinal experiments. New technologies including time-domain nuclear magnetic resonance (TD-NMR)-based methods allow for highly accurate measurements of total body water (TBW) within minutes in a noninvasive manner, but do not permit dissection of ECF versus ICF reservoirs. In contrast, methods such as bioimpedance spectroscopy (BIS) allow dissection of ECF versus ICF reservoirs but are hampered by dependence on many nuanced details in data collection that undermine confidence in experimental results. Here, we present a novel combinatorial use of these two technologies (NMR/BIS) to improve the accuracy of BIS-based assessments of ECF and ICF, while maintaining the advantages of these minimally invasive methods. Briefly, mice undergo TD-NMR and BIS-based measures, and then fat masses as derived by TD-NMR are used to correct BIS outputs. Mice of the C57BL/6J background were studied using NMR/BIS methods to assess the effects of acute furosemide injection and diet-induced obesity on fluid compartmentalization, and to examine the influence of sex, body mass and composition, and diet on TBW, ECF, and ICF. We discovered that in mice, sex and body size/composition have substantial and interactive effects on fluid compartmentalization. We propose that the combinatorial use of NMR/BIS methods will enable a revisioning of the types of longitudinal, kinetic studies that can be performed to understand the impact of various interventions on body fluid homeostasis.


Assuntos
Composição Corporal , Compartimentos de Líquidos Corporais/metabolismo , Deslocamentos de Líquidos Corporais , Espectroscopia de Ressonância Magnética , Adiposidade , Animais , Tamanho Corporal , Impedância Elétrica , Feminino , Masculino , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Fatores Sexuais
8.
Cell Rep ; 33(4): 108270, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33113371

RESUMO

The exact mechanisms underlying the metabolic effects of bariatric surgery remain unclear. Here, we demonstrate, using a combination of direct and indirect calorimetry, an increase in total resting metabolic rate (RMR) and specifically anaerobic RMR after Roux-en-Y gastric bypass (RYGB), but not sleeve gastrectomy (SG). We also show an RYGB-specific increase in splanchnic sympathetic nerve activity and "browning" of visceral mesenteric fat. Consequently, selective splanchnic denervation abolishes all beneficial metabolic outcomes of gastric bypass that involve changes in the endocannabinoid signaling within the small intestine. Furthermore, we demonstrate that administration of rimonabant, an endocannabinoid receptor-1 (CB1) inverse agonist, to obese mice mimics RYGB-specific effects on energy balance and splanchnic nerve activity. On the other hand, arachidonoylethanolamide (AEA), a CB1 agonist, attenuates the weight loss and metabolic signature of this procedure. These findings identify CB1 as a key player in energy regulation post-RYGB via a pathway involving the sympathetic nervous system.


Assuntos
Endocanabinoides/uso terapêutico , Derivação Gástrica/métodos , Sistema Nervoso Simpático/fisiologia , Animais , Endocanabinoides/farmacologia , Feminino , Humanos , Masculino , Camundongos
9.
Obesity (Silver Spring) ; 27(5): 793-802, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30938081

RESUMO

OBJECTIVE: Multiplexed metabolic phenotyping systems are available from multiple commercial vendors, and each system includes unique design features. Although expert opinion supports strengths and weaknesses of each design, empirical data from carefully controlled studies to test the biological impact of design differences are lacking. METHODS: Wild-type C57BL/6J mice of both sexes underwent phenotyping in OxyMax (Columbus Instruments International) and Promethion (Sable Systems International) systems located within the same room of a newly constructed animal research facility in a crossover design study. Phenotypes were examined under chow (2920×)-fed conditions and again after 4 weeks of 60% high-fat diet (D12492) feeding. RESULTS: Food intake, physical activity, and respiratory gas exchange data significantly diverged between systems, depending upon sex of animals and diet supplied. Estimates of energy expenditure based on gas exchange in both systems accounted for a fraction of consumed calories that was greater in males than females. CONCLUSIONS: Design differences quantitatively impact the assessment of metabolic end points and thus the qualitative interpretation of various interventions. Importantly, current multiplexed systems remain blind to multiple additional end points, including digestive efficiency and selected forms of energy flux (nitrogenous, anaerobic, etc.), that account for a physiologically and/or pathophysiologically significant fraction of total energy flux.


Assuntos
Dieta Hiperlipídica/métodos , Ingestão de Energia/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
10.
Curr Hypertens Rep ; 19(4): 27, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28316052

RESUMO

PURPOSE OF REVIEW: The influence of gut bacteria upon host physiology is increasingly recognized, but mechanistic links are lacking. Diseases of energetic imbalance such as obesity and diabetes represent major risk factors for cardiovascular diseases such as hypertension. Thus, here, we review current mechanistic contributions of the gut microbiota to host energetics. RECENT FINDINGS: Gut bacteria generate a multitude of small molecules which can signal to host tissues within and beyond the gastrointestinal tract to influence host physiology, and gut bacteria can also influence host digestive efficiency by altering the bioavailability of polysaccharides, yet the quantitative energetic effects of these processes remain unclear. Recently, our team has demonstrated that gut bacteria constitute a major anaerobic thermogenic biomass, which can quantitatively account for obesity. Quantitative understanding of the mechanisms by which gut bacteria influence energy homeostasis may ultimately inform the relationship between gut bacteria and cardiovascular dysfunction.


Assuntos
Microbioma Gastrointestinal , Homeostase , Hipertensão , Animais , Doenças Cardiovasculares , Trato Gastrointestinal , Humanos , Obesidade
11.
J Clin Invest ; 127(4): 1414-1424, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28263184

RESUMO

Leptin contributes to the control of resting metabolic rate (RMR) and blood pressure (BP) through its actions in the arcuate nucleus (ARC). The renin-angiotensin system (RAS) and angiotensin AT1 receptors within the brain are also involved in the control of RMR and BP, but whether this regulation overlaps with leptin's actions is unclear. Here, we have demonstrated the selective requirement of the AT1A receptor in leptin-mediated control of RMR. We observed that AT1A receptors colocalized with leptin receptors (LEPRs) in the ARC. Cellular coexpression of AT1A and LEPR was almost exclusive to the ARC and occurred primarily within neurons expressing agouti-related peptide (AgRP). Mice lacking the AT1A receptor specifically in LEPR-expressing cells failed to show an increase in RMR in response to a high-fat diet and deoxycorticosterone acetate-salt (DOCA-salt) treatments, but BP control remained intact. Accordingly, loss of RMR control was recapitulated in mice lacking AT1A in AgRP-expressing cells. We conclude that angiotensin activates divergent mechanisms to control BP and RMR and that the brain RAS functions as a major integrator for RMR control through its actions at leptin-sensitive AgRP cells of the ARC.


Assuntos
Angiotensina II/fisiologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores para Leptina/metabolismo , Proteína Relacionada com Agouti/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Basal , Pressão Sanguínea , Dieta Hiperlipídica , Feminino , Neurônios GABAérgicos/metabolismo , Leptina/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Opiomelanocortina/fisiologia , Transporte Proteico , alfa-MSH/fisiologia
12.
Sci Rep ; 5: 11123, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26068176

RESUMO

Dietary fats and sodium are both palatable and are hypothesized to synergistically contribute to ingestive behavior and thereby obesity. Contrary to this hypothesis, C57BL/6J mice fed a 45% high fat diet exhibited weight gain that was inhibited by increased dietary sodium content. This suppressive effect of dietary sodium upon weight gain was mediated specifically through a reduction in digestive efficiency, with no effects on food intake behavior, physical activity, or resting metabolism. Replacement of circulating angiotensin II levels reversed the effects of high dietary sodium to suppress digestive efficiency. While the AT1 receptor antagonist losartan had no effect in mice fed low sodium, the AT2 receptor antagonist PD-123,319 suppressed digestive efficiency. Correspondingly, genetic deletion of the AT2 receptor in FVB/NCrl mice resulted in suppressed digestive efficiency even on a standard chow diet. Together these data underscore the importance of digestive efficiency in the pathogenesis of obesity, and implicate dietary sodium, the renin-angiotensin system, and the AT2 receptor in the control of digestive efficiency regardless of mouse strain or macronutrient composition of the diet. These findings highlight the need for greater understanding of nutrient absorption control physiology, and prompt more uniform assessment of digestive efficiency in animal studies of energy balance.


Assuntos
Gorduras na Dieta/farmacologia , Digestão/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Cloreto de Sódio na Dieta/farmacologia , Animais , Gorduras na Dieta/metabolismo , Digestão/genética , Deleção de Genes , Imidazóis/farmacologia , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/genética , Losartan/farmacologia , Masculino , Camundongos , Piridinas/farmacologia , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/genética
13.
EBioMedicine ; 2(11): 1725-34, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-26870798

RESUMO

Risperidone is a second-generation antipsychotic that causes weight gain. We hypothesized that risperidone-induced shifts in the gut microbiome are mechanistically involved in its metabolic consequences. Wild-type female C57BL/6J mice treated with risperidone (80 µg/day) exhibited significant excess weight gain, due to reduced energy expenditure, which correlated with an altered gut microbiome. Fecal transplant from risperidone-treated mice caused a 16% reduction in total resting metabolic rate in naïve recipients, attributable to suppression of non-aerobic metabolism. Risperidone inhibited growth of cultured fecal bacteria grown anaerobically more than those grown aerobically. Finally, transplant of the fecal phage fraction from risperidone-treated mice was sufficient to cause excess weight gain in naïve recipients, again through reduced energy expenditure. Collectively, these data highlight a major role for the gut microbiome in weight gain following chronic use of risperidone, and specifically implicates the modulation of non-aerobic resting metabolism in this mechanism.


Assuntos
Antipsicóticos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Risperidona/farmacologia , Aumento de Peso/efeitos dos fármacos , Animais , Antipsicóticos/administração & dosagem , Transplante de Microbiota Fecal , Feminino , Metagenoma , Metagenômica/métodos , Camundongos , Risperidona/administração & dosagem , Xenobióticos/farmacologia
14.
Mol Metab ; 3(4): 460-4, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24944905

RESUMO

Resting metabolic rate (RMR) studies frequently involve genetically-manipulated mice and high fat diets (HFD). We hypothesize that the use of inadequate methods impedes the identification of novel regulators of RMR. This idea was tested by simultaneously measuring RMR by direct calorimetry and respirometry in C57BL/6J mice fed chow, 45% HFD, and then returned to chow. Comparing results during chow feeding uncovered an underestimation of RMR by respirometry (0.010 ± 0.001 kcal/h, P < 0.05), which is equivalent in magnitude to ∼2% of total daily caloric turnover. RMR during 45% HFD feeding was increased by respirometry (+0.013 ± 0.003 kcal/h, P < 0.05), but not direct calorimetry (+0.001 ± 0.002 kcal/h). Both methods indicated that return to chow reduced RMR compared to HFD, though direct calorimetry indicated a reduction below the initial chow fed state (-0.019 ± 0.004 kcal/h versus baseline, P < 0.05) that was not detected by respirometry (-0.003 ± 0.002 kcal/h versus baseline). These results highlight method-specific interpretations of the effects of dietary interventions upon RMR in mice, and prompt the reevaluation of preclinical screening methods used to identify novel RMR modulators.

15.
J Gen Physiol ; 143(1): 119-34, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24344248

RESUMO

ATP-sensitive potassium (KATP) channels have the unique ability to adjust membrane excitability and functions in accordance with the metabolic status of the cell. Skeletal muscles are primary sites of activity-related energy consumption and have KATP channels expressed in very high density. Previously, we demonstrated that transgenic mice with skeletal muscle-specific disruption of KATP channel function consume more energy than wild-type littermates. However, how KATP channel activation modulates skeletal muscle resting and action potentials under physiological conditions, particularly low-intensity workloads, and how this can be translated to muscle energy expenditure are yet to be determined. Here, we developed a technique that allows evaluation of skeletal muscle excitability in situ, with minimal disruption of the physiological environment. Isometric twitching of the tibialis anterior muscle at 1 Hz was used as a model of low-intensity physical activity in mice with normal and genetically disrupted KATP channel function. This workload was sufficient to induce KATP channel opening, resulting in membrane hyperpolarization as well as reduction in action potential overshoot and duration. Loss of KATP channel function resulted in increased calcium release and aggravated activity-induced heat production. Thus, this study identifies low-intensity workload as a trigger for opening skeletal muscle KATP channels and establishes that this coupling is important for regulation of myocyte function and thermogenesis. These mechanisms may provide a foundation for novel strategies to combat metabolic derangements when energy conservation or dissipation is required.


Assuntos
Contração Isométrica , Canais KATP/metabolismo , Músculo Esquelético/metabolismo , Esforço Físico , Potenciais de Ação , Animais , Cálcio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Miografia/instrumentação , Miografia/métodos , Sarcolema/metabolismo , Sarcolema/fisiologia
16.
Am J Physiol Endocrinol Metab ; 305(7): E916-24, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23964071

RESUMO

Substantial research efforts have been aimed at identifying novel targets to increase resting metabolic rate (RMR) as an adjunct approach to the treatment of obesity. Respirometry (one form of "indirect calorimetry") is unquestionably the dominant technique used in the obesity research field to assess RMR in vivo, although this method relies upon a lengthy list of assumptions that are likely to be violated in pharmacologically or genetically manipulated animals. A "total" calorimeter, including a gradient layer direct calorimeter coupled to a conventional respirometer, was used to test the accuracy of respirometric-based estimations of RMR in laboratory mice (Mus musculus Linnaeus) of the C57Bl/6 and FVB background strains. Using this combined calorimeter, we determined that respirometry underestimates RMR of untreated 9- to 12-wk-old male mice by ∼10-12%. Quantitative and qualitative differences resulted between methods for untreated C57Bl/6 and FVB mice, C57Bl/6 mice treated with ketamine-xylazine anesthesia, and FVB mice with genetic deletion of the angiotensin II type 2 receptor. We conclude that respirometric methods underestimate RMR in mice in a magnitude that is similar to or greater than the desired RMR effects of novel therapeutics. Sole reliance upon respirometry to assess RMR in mice may lead to false quantitative and qualitative conclusions regarding the effects of novel interventions. Increased use of direct calorimetry for the assessment of RMR and confirmation of respirometry results and the reexamination of previously discarded potential obesity therapeutics are warranted.


Assuntos
Metabolismo Basal/fisiologia , Calorimetria/métodos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Biochem Biophys Res Commun ; 415(4): 637-41, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22079630

RESUMO

The cardiovascular system operates under demands ranging from conditions of rest to extreme stress. One mechanism of cardiac stress tolerance is action potential duration shortening driven by ATP-sensitive potassium (K(ATP)) channels. K(ATP) channel expression has a significant physiologic impact on action potential duration shortening and myocardial energy consumption in response to physiologic heart rate acceleration. However, the effect of reduced channel expression on action potential duration shortening in response to severe metabolic stress is yet to be established. Here, transgenic mice with myocardium-specific expression of a dominant negative K(ATP) channel subunit were compared with littermate controls. Evaluation of K(ATP) channel whole cell current and channel number/patch was assessed by patch clamp in isolated ventricular cardiomyocytes. Monophasic action potentials were monitored in retrogradely perfused, isolated hearts during the transition to hypoxic perfusate. An 80-85% reduction in cardiac K(ATP) channel current density results in a similar magnitude, but significantly slower rate, of shortening of the ventricular action potential duration in response to severe hypoxia, despite no significant difference in coronary flow. Therefore, the number of functional cardiac sarcolemmal K(ATP) channels is a critical determinant of the rate of adaptation of myocardial membrane excitability, with implications for optimization of cardiac energy consumption and consequent cardioprotection under conditions of severe metabolic stress.


Assuntos
Coração/fisiopatologia , Hipóxia/metabolismo , Canais KATP/metabolismo , Miocárdio/metabolismo , Sarcolema/metabolismo , Potenciais de Ação , Animais , Canais KATP/genética , Camundongos , Camundongos Transgênicos , Mutação , Consumo de Oxigênio , Potássio/metabolismo , Transgenes
18.
J Mol Cell Cardiol ; 51(1): 72-81, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21439969

RESUMO

Physical activity is one of the most important determinants of cardiac function. The ability of the heart to increase delivery of oxygen and metabolic fuels relies on an array of adaptive responses necessary to match bodily demand while avoiding exhaustion of cardiac resources. The ATP-sensitive potassium (K(ATP)) channel has the unique ability to adjust cardiac membrane excitability in accordance with ATP and ADP levels, and up-regulation of its expression that occurs in response to exercise could represent a critical element of this adaption. However, the mechanism by which K(ATP) channel expression changes result in a beneficial effect on cardiac excitability and function remains to be established. Here, we demonstrate that an exercise-induced rise in K(ATP) channel expression enhanced the rate and magnitude of action potential shortening in response to heart rate acceleration. This adaptation in membrane excitability promoted significant reduction in cardiac energy consumption under escalating workloads. Genetic disruption of normal K(ATP) channel pore function abolished the exercise-related changes in action potential duration adjustment and caused increased cardiac energy consumption. Thus, an expression-driven enhancement in the K(ATP) channel-dependent membrane response to alterations in cardiac workload represents a previously unrecognized mechanism for adaptation to physical activity and a potential target for cardioprotection.


Assuntos
Potenciais de Ação , Metabolismo Energético , Coração/fisiopatologia , Canais KATP/metabolismo , Condicionamento Físico Animal , Animais , Canais KATP/biossíntese , Canais KATP/genética , Membranas/metabolismo , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...